Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033034

RESUMO

Breast cancer is the most common cancer diagnosis worldwide accounting for 1 out of every 8 cancer diagnoses. The elevated expression of Thymidine Kinase 1 (TK1) is associated with more aggressive tumor grades, including breast cancer. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement in breast cancer has not been identified. Here, we evaluate potential pathogenic effects of elevated TK1 expression by comparing HCC 1806 to HCC 1806 TK1-knockdown cancer cells (L133). Transcriptomic profiles of HCC 1806 and L133 cells showed cell cycle progression, apoptosis, and invasion as potential pathogenic pathways affected by TK1 expression. Subsequent in-vitro studies confirmed differences between HCC 1806 and L133 cells in cell cycle phase progression, cell survival, and cell migration. Expression comparison of several factors involved in these pathogenic pathways between HCC 1806 and L133 cells identified p21 and AKT3 transcripts were significantly affected by TK1 expression. Creation of a protein-protein interaction map of TK1 and the pathogenic factors we evaluated predict that the majority of factors evaluated either directly or indirectly interact with TK1. Our findings argue that TK1 elevation directly increases HCC 1806 cell pathogenicity and is likely occurring by p21- and AKT3-mediated mechanisms to promote cell cycle arrest, cellular migration, and cellular survival.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sobrevivência Celular/genética , Virulência , Divisão Celular , Timidina Quinase/genética , Timidina Quinase/metabolismo , Movimento Celular/genética
2.
Cell ; 185(11): 1875-1887.e8, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35523182

RESUMO

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , RNA Mensageiro , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
3.
bioRxiv ; 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35233575

RESUMO

Despite a clear role in protective immunity, the durability and quality of antibody and memory B cell responses induced by mRNA vaccination, particularly by a 3 rd dose of vaccine, remains unclear. Here, we examined antibody and memory B cell responses in a cohort of individuals sampled longitudinally for ∼9-10 months after the primary 2-dose mRNA vaccine series, as well as for ∼3 months after a 3 rd mRNA vaccine dose. Notably, antibody decay slowed significantly between 6- and 9-months post-primary vaccination, essentially stabilizing at the time of the 3 rd dose. Antibody quality also continued to improve for at least 9 months after primary 2-dose vaccination. Spike- and RBD-specific memory B cells were stable through 9 months post-vaccination with no evidence of decline over time, and ∼40-50% of RBD-specific memory B cells were capable of simultaneously recognizing the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells induced by the first 2 doses of mRNA vaccine were boosted significantly by a 3rd dose and the magnitude of this boosting was similar to memory B cells specific for other variants. Pre-3 rd dose memory B cell frequencies correlated with the increase in neutralizing antibody titers after the 3 rd dose. In contrast, pre-3 rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit reactivation of immunological memory and constrain further antibody boosting by mRNA vaccines. These data provide a deeper understanding of how the quantity and quality of antibody and memory B cell responses change over time and number of antigen exposures. These data also provide insight into potential immune dynamics following recall responses to additional vaccine doses or post-vaccination infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...